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It is well known that in a homogeneous liquid the convective instability of equilibrium 
has a monotonic character [I]. The possibility of a thermocapillary oscillatory instability 
for systems of two infinitely thick layers was established in [2]. For layers with finite 
thickness the oscillatory instability of equilibrium has been observed for both thermocapil- 
lary [3, 4] and thermogravitational convection [5]. In this paper we study the appearance of 
oscillations under the combined action of both instability mechanisms. It is established 
that the finite thickness of the layers substantially changes the criterion for the appear- 
ance of oscillatory convection, and the determining parameter is the ratio of the thickness 
of the layers. It is shown that under the combined action of thermocapillary and thermo- 
gravitational mechanisms of convection the oscillatory instability may turn out to be most 
dangerous even for systems for which the instability is monotonic in the presence of only one 
of the mechanisms. 

I. Let the space between two solid horizontal plates, on which a constant and different 
temperature is maintained (the temperature difference is equal to Q), be filled witlh two 
layers of immiscible viscous liquids. The x axis is oriented horizontally and the y axis is 
oriented vertically upwards. The equations of the solid boundaries are y = al and y = --a2. 
The coefficients of dynamic and kinematic viscosity, thermal conductivity, thermal diffusivity, 

and volume expansion are nm, Vm, ~ m, Xm, Bm (m = I for the upper liquid and m = 2 :for the 
lower liquid), respectively. The coefficient of surface tension depends linearly on the 
temperature: o = o0 -- sT. 

It is well known that the curvature of the interface is significantly only for long-wave- 
length perturbations [6]. In this paper, such perturbations are not studied and the inter- 
face is assumed to be flat (y = 0). 

We introduce the following notation: ~----~i/~, ~ = vl/v2, ~ = •215 ~ = ~i/~2, % = %1/%2, 
a = a~/a I. We choose the quantities al, a~/vl, vl, and 9 as the units of length, time, stream 
function, and temperature, respectively. The dimensionless temperature gradient dT0/dy in 
equilibrium is equal to A I =--s/(i ~ • in the upper liquid and A 2 =--s• ~ • in the lower 
liquid, where s = --I for heating from above and s = I for heating from below. For normal per- 
turbations, the stream function ~m and the temperature T m (m = I, 2) with wave number k and 
complex increment I + ie, the linearized equations of convection have the form 

- + -97" DT~, 

w h e r e  D = d 2 / d y  2 - -  k 2 ,  d l  = b l  = c l  = 1 ,  d2 = 1/v, b2  = 1 / ~ ,  c2 = 1 / •  P r  = v l / •  i s  P r a n d t l ' s  
3 2 number, and Gr = gBiOal/vl is the Grashof number. 

The conditions on the solid boundaries are 
; t 

y=i: ~i ~I=TI=0, y=--a: ~2=~2=T~=0; (1.2) 

and the conditions at the interface are 

t r 

y = 0 !  ~ 1 = ~  . . . .  0, ~I  ~2, T1 T2~ z T  I T'~, ( ] . 3 )  

Ng~ - -  ~k Mr T~ = 9~, 

Mr = ~M/Pr (M = ~O~/~X~) is the Marangoni number. The boundary of stability of equilibrium 
is determined by the condition I = 0. 
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The solution of the boundary-value problem (1.1)-(1.3) can be obtained in a simple ana- 
lytic form only in the case of the monotonic instability (~ = 0) with Gr = 0 [7]. In this 
work, in order to obtain the limits of stability, the solution of the boundary-value problem 
was constructed by the Runge--Kutta method. 

2. The convective stability of two-layer systems in the presence of a thermocapillary 
effect was studied in [2, 6-9]. In [6-9] the monotonic instability of the equilibrium was 
studied. In [2] the possibility of the appearance of an oscillatory instability for in- 
finitely thick layers, which corresponds physically to the case when the thickness of the 
layer is much greater than the wavelength of the perturbations, was also studied. In a real 
situation (for layers of finite thickness). However, the most dangerous perturbations are 
those whose wavelengths are of the order of the thicknesses of the layers, the results in 
[2] describe only the short-wavelength asymptotic behavior of the neutral curves. The ratio 
of the thicknesses of the layers is one of the determining parameter. 

As an example, we shall present the results of a calculation of the neutral curves, per- 
formed for a system consisting of formic acid and transformer oil with the following param- 
eters: Pr = 14.2, ~ = 0.065, q = 0.09, X = 1.40, • = 2.44 (there is no gravity and Gr = 0). 
According to the criteria presented in [2], in the case of infinitely thick layers, for the 
given system only the monotonic instability can occur, and only for one direction of the tem- 
perature gradient; for the opposite orientation of the temperature gradient, the equilibrium 
is absolutely stable. As calculations show, the results are substantially different for 
layers of finite thickness. The monotonic instability is realized only with heating from 
the side of the transformer oil and only for a > a, (it can be shown that a, = I/~X = 0.85 
[7]). For a < a,, an interval of wave numbers in which the monotonic instability appears 
with the opposite method of heating, appears in the long-wavelength region. The neutral 
curves are shown in Fig. I: the lines I-5 correspond to a = 2, I, 0.8, 0.7, and 0.6. In ad- 
dition, an oscillatory instability appears in the long~wavelength region. Figure 2 shows the 
results of the calculation of the neutral curves sMr (the curves I and 3) and of the frequency 
(the curves of 4 and 5) for the oscillatory instability with a = 0.6 and 0.34. The curve 2 
corresponds to the monotonic instability for a = 0.6. 

3. The action of thermocapillary and thermogravitational mechanisms opens up new pos- 
sibilities for the appearance of the oscillatory instability. We shall study a system con- 
sisting of water and No. 200 silicon oil with the following parameters: Pr = 6.28, ~ = 1.116, 
q = 0.915, X = 0.472, ~ = 0.169, B = 7.16. The results of the calculation of the neutral 
curves for the case of purely thermocapillary convection are shown in Fig. 3; the curves I-5 
correspond to a = 0.2, 0.4, I, 1.6, and Z.4. The oscillatory instability was not observed 
for this system. 

We fix the value a = 1.6 and study the combined effect of thermocapillary and thermo- 
gravitational mechanisms of convection. In the case when the thermocapillary mechanism is 
absent (Mr = 0) and heating occurs from below, a monotonic thermogravitational instability 
appears; several neutral curves corresponding to different modes are shown in Fig. 4a (lines 
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I-3). The inclusion of the thermocapillary mechanism leads to the appearance of a section of 
oscillatory instability near the points of intersection of the neutral curves (Fig. 4b-d, 
sMr = 250, 500, and 3500, respectively, the sections of the oscillatory instability are shown �9 

by the broken line, and the sections of the monotonic instability are shown by the solid line). 
The oscillatory instability appeared in an analogous manner when the parameter a was changed 
in the case of the purely thermogravitational convection [5]. In contrast to the case studied 
in [5], as sMr is increased the oscillatory perturbations become most dangerous (Fig. 4c). 

We note that when gravity appears, the thermocapillary instability (corresponding to the 
line 4 in Fig. 3) stabilizes for both heating from below (sMr = 3500, Fig. 4d) and from above 
(lines 4-6, Fig. 4a corresponded to sMr = --lu00, --1500, --2000), as Gr increases, the interval 
of wave numbers in which instability appears narrows and vanishes. 

Thus, in a real situation it may be expected that oscillatory states of convection will 
appear even in cases when the criteria obtained in [2] predict absolute stability or monotonic 
instability of equilibrium. 

The authors thank E. M. Zhukhovitskii for his interest in this work. 
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